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The shape of free jets of water under gravity 
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A study is made of the form taken by a slender jet of water whose only boundary 
is a free surface. The only forces acting are inertial and gravitational. Attention 
is paid to the cross-flow velocity components and to the development of the 
shape of the cross-section of the jet as it progresses. It is established that a jet 
with initially elliptic cross-sections can remain elliptical, and the variation in 
the aspect ratio along the jet is determined. 

1. Introduction 
A jet of water emerging from an upward-inclined nozzle travels in a more or 

less parabolic arc. Elementary momentum arguments can be used to establish 
that the behaviour of the jet is equivalent to that of a free ballistic projectile 
with the same initial velocity vector, providing the jet is sufficiently thin. Thus 
the velocity vector is directed along the jet, and is a combination of a uniform 
horizontal velocity and a vertical velocity varying like the square root of dis- 
tance below the top of the arc. 

The above is essentially a ‘zero-order’ result in the thickness of the jet. In  
fact the velocity vector must contain in addition cross-flow components of the 
order of the thickness. This is demanded by mass conservation, owing to the 
variation along the jet of the main velocity component. These cross-flow velocities 
then influence the shape of the ballistic trajectory and determine the shape of 
the cross-section of the jet. The zero-order result tells us nothing about the shape 
of the cross-sections, so long as their length scale is small compared with the 
length scale for changes along the jet. 

The last restriction is the natural requirement for a ‘one-dimensional flow’, 
as in hydraulics (e.g. Streeter 1961, ch. 3) or gasdynamics in pipes (0.g. Shapiro 
1953, ch. 8). In  such one-dimensional situations with known pipe boundaries, 
attention is normally concentrated on the main flow as an unknown. Here (and 
see also Tuck 1974) the situation is somewhat different in that the main flow is 
relatively well known, but the ‘pipe’ boundary is to be determined. The 
additional condition which enables such a determination to be made is the 
constant-pressure free-surface condition. 

In  the case of purely two-dimensional flow, Keller & Wietz (1957) have pro- 
vided an analysis of thin free sheets of water, equivalent in a number of respects 
to that in the present paper. They adapt the distortion procedure used by 
Friedrichs (1948) for deriving the shallow-water theory of water waves, in which 
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FIGURE 1. Sketch of shape of vertical and non-vertical free jets, and indication 
of co-ordinates. 

the vertical length scale is assumed much smaller than the horizontal scale, and 
obtain an asymptotic expansion in terms of the ratio of these length scales. More 
recently, Keller & Geer (1973) have used for two-dimensional flow an inverted 
asymptotic expansion (space co-ordinates as functions of complex potential) 
which also has the property of being valid for vertical jets. 

The two types of flow considered in the present paper are illustrated in figure 1. 
If the main flow has a non-zero horizontal velocity component we obtain the 
true parabolic arc discussed above. However, there is also considerable interest 
in the somewhat simpler problem where the horizontal velocity vanishes, and 
the jet is wholly rising or wholly falling. In  either case the velocity increases 
indefinitely (and therefore the jet becomes ever thinner) as the co-ordinate y 
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tends to minus infinity, just as would the velocity of a projectile allowed to  fall 
for ever. The vertical jet has the additional bizarre feature that it must spread 
out to an infinite radius at the y value where its main velocity vanishes. This must 
eventually cause the one-dimensional assumption to fail, but one would in any 
case normally expect to have matched the flow to an exit flow from a rigid 
container at a y value below that for stagnation. 

Such matching has been the aim of a number of authors recently, e.g. Keady 
(1973) and Conway (1967) for the vertical case, Clarke (1965) for a special case 
of the parabolic-arc jet where the initial velocity is horizontal, and Keller & 
Geer (1973) for a general class of problems. The above investigations all concern 
solely two-dimensional flows. No comparable analyses including gravity seem 
to have been published for three-dimensional jets, even in the axisymmetric 
vertical case. 

There is however a substantial body of literature (see e.g. Chandrasekhar 1968, 
ch. 12; Lamb 1932, $273; Rayleigh 1945, ch. 20; Keller, Rubinow & Tu 1973) 
on instability of cylindrical columns of flowing liquid, in the absence of gravity 
but under the influence of surface tension. Axisymmetric waves of small amplitude 
grow owing to surface-tension effects if their wavelength along the jet exceeds 
the circumference. The maximum growth rate occurs at about one and a half 
times that wavelength, and is such as to double the size of the disturbance in 
0.09 s for a 1 em diameter jet. This instability is ultimately responsible for the 
disintegration of the jet, but its influence can be postponed for sufficiently thick 
jets of sufficiently high speed, and is reduced by gravitational and viscous effects. 

Rayleigh (1945, $358) also discusses experimental observations of Bidone and 
others on variations in the cross-section of jets with other than circular initial 
sections. For example (p. 355), “...in the case of an elliptical aperture with major 
axis horizontal, the sections of the jet taken at increasing distances gradually 
lose their eccentricity until at  a certain distance the section is circular. Further 
out the section again assumes ellipticity, but now with the major axis vertical 
and (in the circumstances of Bidone’s experiments) the ellipticity increases 
until the jet is reduced to a flat sheet in the vertical plane, very broad and thin. 
This sheet preserves its continuity to a considerable distance (e.g. six feet) from 
the orifice, where finally it is penetrated by air.. . .” The present theory generates 
solutions confirming these observations, which can be repeated by anyone using 
a garden hose. Taylor (1960; see also Longuet-Higgins 1972) provided a treatment 
of this problem neglecting gravity, and the present analysis can be interpreted 
as an extension of Taylor’s work to include gravity. 

We suppose the fluid to be inviscid and incompressible, and to be moving 
steadily and irrotationally with velocity 

q = V 4 ( X , Y , Z ) ,  (1.1) 

(1.2) where 

The only boundaries of the flow are free surfaces, on which the velocity potential 
satisfies a kinematic condition of zero normal velocity, i.e. 

V24 = 4% + 4ytJ + 4 z z  = 0. 

n .q = a$/an = 0, (1.3) 
40-2 
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where n is a unit outward normal, and in addition a dynamic free-surface boun- 
dary condition. We neglect surface tension, and therefore must require that the 
pressure is equal to atmospheric pressure p A  on the boundary. Bernoulli's equa- 

(1.4) 
tion states that 

where y is a co-ordinate measured vertically upward, and where the velocity 
magnitude q takes the value U and the pressure is atmospheric at y = yo. 

In  the following analysis we shall use a non-dimensional formulation in which 
U is taken as a velocity scale, and U 2 / g  as a length scale. Thus we set 

PIP + &q2 + 9Y = PA/P  + w2 + 9Y0, 

9 = uq*, (1.5) 

Y = Yo+(U2/g)Y*9 (1.6) 

etc., but immediately drop the stars on all normalized quantities. The Bernoulli 
equation (1.4) gives for p (which is now in fact a pressure coeficient) 

- p  = q2+2y- 1, (1.8) 

and the dynamic free-surface condition is that p = 0 on the boundary of the jet. 
The problem so normalized is characterized by a non-dimensional parameter E 

measuring the strength or thickness of the jet. If S denotes the dimensional 
volume flux in the jet, then the quantity S/U is a measure of the dimensional 
cross-sectional area of the jet and (S /U)*  a measure of its actual lateral dimen- 
sions. The corresponding non-dimensional thickness measure is 

which we take as our fundamental small parameter. The quantity E can also be 
interpreted as the inverse square of a Froude number. Our aim in the present 
paper is to construct an asymptotic expansion for small E. 

2. Vertical motion 
Consider a rising (V  > 0) or falling (V  < 0) body of water, symmetrical about 

x = 0 and bounded by free surfaces x = 5 X(y, x ) ,  where X = O(E). We suppose 
that the dominant velocity in this jet is Y ( y )  in the y direction, where T' = O( 1) 
with respect to the small parameter E, and is to be determined. We set 

@ = @ O W  + @(x, Y, 21, (2.1) 

where &(y) = V(y) and where the cross-flow potential @ is small. In  fact 
@ = O(e2) in this problem, as we shall see. 

The one-dimensional character of the flow in the limit as e+ 0 requires that 
all quantities vary more slowly in the main direction of flow than normal to it; 
specifically a/ay = O(1) but a / h ,  a/& = O(s-l). The exact equation for @, 
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is therefore approximated with an error O(e2) by 

QZZ + QZZ = - V'(y). 

Similarly, the exact kinematic boundary condition on x = & X(y, z) ,  namely 
[from (1.3)] 

is likewise approximated by 

@ Z T x z @ z  = f VXV.  (2.3) 

In  classical one-dimensional flows in pipes of known geometry the problem of 
determining the cross-flow velocities consists (see Tuck 1974) of solving the two- 
dimensional Poisson equation (2.2) in the interior portion 1x1 < X of the x,z 
plane, subject to (2.3), which prescribes the normal velocity on the cross-section 
x = X in that plane. 

Continuity demands that the net flux given by (2.3) exactly balances the rate 
of production of volume by the source term on the right of (2.2). Thus 

- V ' ( y ) S ( y )  = 2 VX,dz  = VS(y), (2.4) s or 

where X(y) = 2 I X ( y ,  z ) d z  is the cross-sectional area at station y. That is, from 
(2.4) we have V(y) S(y) = constant, 

which is the ordinary one-dimensional continuity equation or Venturi law, and 
can be obtained by elementary means. 

In  the present case, the boundary equation X(y, z )  is unknown, and the prob- 
lem formulation is completed by use of the dynamic free-surface condition (1.8). 
The exact expression for the pressure becomes 

(2.5) 

- p  = (v+@V)2+@:+@:+2y-1, 

-p = ( V2 + 2y - 1) + (2 V@., + a:+ @:) which reduces to 

on neglect of the O(s4) term @;. The O( 1) terms in (2.6) vanish if 

(2.6) 

v =  &(l-Zy)*, (2.7) 

and if (2.7) is true the pressure coefficient is O(e2) throughout the jet. The dynamic 
boundary condition requires that the O(e2) part also vanishes on x = +X, so 
that 

2V@, ,+@;+@: = 0. (2.8) 

The task confronting us then is to solve (2.2) subject to both (2.3) and (2.8) 
on the unknown boundary x = f X(y, 2). This task is clearly a formidable one 
in general, and we present here solutions only for the case of elliptic sections. 
Of course, an even simpler special case is the two-dimensional case of a thin 
vertical sheet of water, and the present method produces results for this case 
equivalent to those of Keller & Geer (1973) and others. 
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3. Vertical jets with elliptic sections 
We now seek a solution of (2 .2 )  of the form 

= A(y)+C(y)x2+D(y)z2, (3.1) 

C + D =  -8V’. (3.2) 

(3.3) 

where A @ ) ,  C(y) and D(y)  are to be determined. Equation (2.2) is satisfied if 

We also assume that the sections have an elliptic form, with 

X2(Y, 4 = a2(y) - r2(y) z2, 

where a(z) is the (unknown) semi-axis in the x direction and b(z )  = u(z)/y(z) is 
the semi-axis in the x direction. 

On substitution of (3.1) and (3.3) in the kinematic boundary condition (2.3), 
we have 

2 x c  + 2zD(y2z/X) = ( V / X )  (aa’ - yy’z2), 

Ol! (2Cu2- Vaa’) +22(2Dy2- 2cy2+ Vyy’) = 0, (3-4) 

C = +V(a’/a), and C - 0  = +V(y’/y). ( 3 4 ,  (3.6) 

(3.7), (3.8) 

which is satisfied for all x on the cross-section if and only if 

Equations (3.2) and (3.6) together imply 

- 4 c  = V’ - V(y’/y),  - 4 0  = V’ + V(y’/y),  

and from (3.5) and (3.7) we deduce 

2a‘/a + V’/ V = y’/y, 

or d V / y  = constant, 

which is a re-statement of the continuity equation (2.5), since S = nub = nu2/y. 
Turning to the dynamic free-surface condition (2.8), we have on x = X 

2 V(A’ + c ’ X 2  + 0’2’) + 4c2X2 + 4D2Z2 = 0, 

i.e. 

(2V~’+2VC’u2+4C2a2)+x2( -2VC’y2+2VD’-4C2y2+402) = 0, (3.9) 

which is true for all x if A’ = - a2(C‘ + ZCz/V) (3.10) 

and VD’ + 202 = y2( VC’ + 2C2). (3.11) 

Equation (3.10) ultimately determines the quantity A(y) and will not concern 
us further in the present paper. Note that neither A(y) nor a(y)  appears in (3.11), 
which now becomes an equation to determine the aspect ratio y(y)  of the ellipse. 
On elimination of C(y) by use of (3.2), and use of (2.11) and (2.12) we have 

VD’(1 +y2) + 202(l-y2) = (y2/V2) (1 - 2DV). (3.12) 

It is convenient to use 6 = - V(y) as independent variable instead of y itself, 
writing D’(y) = [-‘dD/d6. 
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Thus d D  2 
( 1  + y2) - + 2( 1 - y 2 )  D2 = 1 ( 1  + 2Dt;), at; EZ 

(3.13) 

which is supplemented by (3 .8) ,  namely 

dy/dt; = - y ( 4 D +  115). (3.14) 

The quantity D can be eliminated between (3.13) and (3 .14) ,  leading to a non- 
linear second-order ordinary differential equation for ~(5). Tor falling jets 
(t; > 0)  it  is convenient to make the change of variables 

y2 = A ,  t; = et, 

and we find that h = h( t )  then satisfies 

3 h ( l - h )  5 + 3 h  A2, 
l + h  4 h ( l + h )  

X = 2 A +  

(3 .15) ,  (3.16) 

(3 .17)  

where dots denote dldt. 
It is notable that the independent variable t does not appear explicitly in 

(3.17) and thus the solution trajectories can be studied in the h, A phase plane, 
by solution of the first-order equation 

dA 3 h ( l - h ) 1  5 + 3 h  A. _ -  
d h - 2 +  l + h  3 + 4 h ( l + h )  

(3.18) 

Another notable feature of (3.17) is that if h(t) satisfies (3.17) then so does 
l /h( t ) .  This feature is expected from the lateral symmetry of the problem, and 
simply corresponds to an interchange of semi-axes of the ellipse. 

Trajectories obtained by numerical solution of (3 .18)  are shown in figure 2. 
The critical or equilibrium points are a stable node a t  the origin h = A = 0 and 
an unstable focus at h = 1, A = 0. I n  the neighbourhood of h = 1, A = 0, the 
cross-section is almost circular, but its eccentricity takes alternately positive and 
negative values as we proceed along the jet and the trajectory spirals out in a 
clockwise manner. Note however that this spiral has a very large rate of increase 
of radius (asymptotically a factor of exp (2nJ2) 2~ 7000 times per revolution), 
so that on the scale of figure 2 very few oscillations can be seen. The immediate 
neighbourhood of the point h = 1, A = 0 corresponds to the start of the flow at 
t = -00 or t; = 0, as a circular column with zero velocity and therefore infinite 
cross-sectional area. When the lateral length scale becomes large enough to be 
comparable with the length scale for changes along the jet, the one-dimensional 
assumption breaks down, and other factors need to be considered. The behaviour 
shown in this region is related to  the Rayleigh instability discussed in the 
introduction. 

The ultimate destination of all trajectories is either h = 0 or h = 00. If the 
former, the trajectory asymptotes to the origin along 

A =  - 6 4  

i.e. we have h cc e-6t = t;-6, 

or y cc t ;4 .  All trajectories which start ‘below’ a certain critical trajectory, 
whose approximate location is shown dashed in figure 2, ultimately have the 
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A 
FIGURE 2. Phase-plane trajectories for against A, where h is the square of the ratio 
between the semi-axes of the elliptic cross-section of a vertical jet. The dashed trajectories 
divide the plane into two regions, all trajectories tending to h = 0 in one and to h = GO 
in the other. 

above property. For example any trajectory which startswith A = 0 and h > 1.07 
ultimately has A+ 0. Thus the h a 1  flattening direction is generally that of the 
initial minor axis, when the initial jet is locally cylindrical. On the other hand, 
initially circular jets, with h = 1, > 0.2, do tend to flatten in the direction 
which their initial rate of change of aspect ratio indicates. Those trajectories 
which asymptote to h = 00 do so along A = + 6h, i.e. have y cc c3. The reciprocal 
property of (3.17) mentioned earlier is confirmed by figure 2 ;  there is a corres- 
pondence between the behaviour near the origin and near infinity in this figure. 
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The zero-gravity situation studied by Taylor (1960) may be reconstructed by 
letting g-f 0 while keeping the original dimensional variable y in (1.6) fixed. This 
indicates that t + O  and hence (for O(1) changes in A )  that (AI-foo in (3.18). 

dA 1 5 + 3 h  
Thus (3.18) reduces to 

-=-- 
&A 4 A ( 1 + A ) A '  

(3.19) 

which integrates to give A = Ah%( 1 +A)-$. (3.20) 

The elliptic integral resulting from a further integration of (2.20) agrees with 
Taylor's (1960) equation (8). In  figure 2, trajectories corresponding to the approxi- 
mation (3.20) are the asymptotes as A+ .t 00. 

4. Motion in parabolic arcs 
Wenow suppose that the jet possesses an O( 1) horizontal component of velocity, 

and rises to a peak then falls. The origin of co-ordinates is chosen near the peak, 
at which point the dominant flow direction is horizontal and (after normalization) 
of unit magnitude to within an error O(e2). 

It is 'intuitively clear' that such a free jet under gravity executes a parabolic 
arc of the same nature as a ballistic trajectory of a projectile. With the normali- 
zation chosen, this arc has equation 

y = -p. (4.1) 

Although a direct proof may be given (see, e.g., Keller & Geer 1973) that this is 
the correct zero-order limit as EJO, we shall instead assume this result, and 
merely show that an asymptotic expansion which begins in effect with (4.1) as 
the leading term is consistent. 

It is convenient to work with a set of parabolic co-ordinates (5,q) defined by 

x = E+&, y = -Q%+v+&p.  ( 4 4  

(4.3) 

The change of co-ordinates from (2, y )  to ( 6 , ~ )  is conformal, with 

x + i y  = (5+ iq) - &i(t + i$2. 
Hence the Laplace equation ( I .  1) transforms to 

$66 + 9 q q  + J A Z  = 0, 

where the Jacobian J is given by 

(4.4) 

J = w, ?/)/a(E, 71) = (1 + rI2 + E2. (4.5) 

71 = E*(E,4,  (4.6) 

(4.7) 

Similarly, the exact dynamic condition is obtained by setting p = 0 on 7 = E,, 

(4.8) 
where 

The top and bottom surfaces of the jet are assumed to be defined by 

where E, 2 E-. The exact kinematic boundary condition on 71 = E ,  is 

9? = @*, + J@*r 

- p  = J-1(9s"+9~)+9~-52+2v+r2- 1. 
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We now make the one-dimensional assumption that E ,  is a small quantity, 
E ,  = O(E) ,  and that flow is mainly in the direction of increasing 5, with magnitude 
V(5) to be determined. The whole flow takes place in a region of small r] = O(E),  
where 

and J = 1 + 6 + O ( ~ ) .  (4.11) 

Assuming $ = + @(5, 7, d, (4.12) 

where @ = O(e2) and a/ac = O(l),  whereas a/@, a/& = O(e-1), we have from (4.4) 

@,, + J@zz  = - m E )  + O(e2), (4.13) 

x = ~ + O ( B ) ,  y = -M2+O(€)  = -&Z2+O(€), (4.9), (4.10) 

which can be further approximated to 

@,,+h2@, = -d(hV)/d5+O(e) ,  (4.14) 

where W )  = (1 + 5”* (4.15) 

and V(E) = (1 + t2P $85). (4.16) 

The corresponding approximation to the kinematic boundary condition (4.7) is 

<D, - h2@,E*, = hVE*,, (4.17) 

while the dynamic condition (4.8) implies 

( h V + @ . , ) 2 + ( @ , ) 2 + J q  = J(l+52-2r]-1;12), 

or, retaining only terms of order c2 or larger, 

hV2+2hV@,+ @,+h2@; = (1 +52)2-4r]2. 

The zero-order terms in (4.18) provide the velocity magnitude, i.e. 

(4.18) 

h2V2 = (1 +&?)2, 

or [from (4.10) and (4.15)] V = (1-22~)4+0(s). (4.19) 

This is the velocity of a projectile in the assumed normalized ballistic trajectory, 
confirming consistency of the zero-order assumption. The O(e2) terms in (4.18) 

(4.20) 
require 

on r] = E(5,z). 
Our general task is to solve (4.14) subject to (4.17) and (4.20) on the unknown 

surface r] = E,. This task is even more difficult than that for the vertical jet, and 
again we shall restrict attention to elliptic-sectioned jets. Again, the case of two- 
dimensional waterfall-like sheets of water can be solved by the present method, 
giving results equivalent to those of previous investigators. 

- h2p = 2h2@., + @; + h w ;  + 4rp = 0 

5. Parabolic jets with elliptic sections 
We now attempt a solution 

@ = A ( E ) + Q ( 5 ) r 2 + - w z 2  

to (4.14), which is satisfied if C + h2D = - 5. 
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The jet surface is taken to be defined by 

7 = *El (5 ,4 ,  

where E: = a2(f)  - B2(f)  9. 

Thus the cross-section is assumed to be an ellipse in the 7, z plane with centre a t  
7 = 0, with semi-axis a(5) in the 7 direction (i.e. normal to the jet but in its plane) 
and with semi-axis b = a//3 in the z direction. The latter is a true length scale; 
however, the true half-height of the ellipse in the 7 direction is h(c)a( ( ) .  It is 
again true that, without loss of generality, we can assume that @ contains no 
terms in 7, corresponding to choosing 7 = 0 as the centre-plane. 

Now the kinematic boundary condition (4.17) implies that 

i.e. 

Thus C = +h2(a'/a), 

(2Ca2 - h2aa') + 9( - 2CPz + 2DP2h2 +&3'h2) = 0.  

and C-Dh2 = +h2(/3'//3). 

Solving for C and D from (5.2) and (5.7) gives 

4C = h2((p'//3) - 25, 

and 

Equating the expressions for C in (5.6) and (5.8) leads to 

- 4h2D = hz((p'//3) + 2E. 

a'( 1 + cz)//3 = constant, 

or Va2h/P = constant, 

or Vn(ah) b = constant, (5.10) 

which is the one-dimensional continuity equation again. 
The dynamic boundary condition (4.20) gives in the presenticase 

2h2(A' + C'7' + 0'2') + (2C7)' + h2(2D2)2 + 47' = 0. (5.11) 

On substitution of 7 = 2 El we obtain 

2h2(A' + C'U') + 4a2( 1 + C2) + [2h2(D' - C'P') - 4C2/3' + 4D'h' - 4/3'] Z' = 0. (5.12) 

Thus A' = - u2C' - 2a2( 1 + C2)/h2 (5.13) 

and h'(D' + 2D2 - /3'C') = 2/3'( 1 + C2). (5.14) 

Equation (5.14) does not involve A' and can be used to solve for the eccentricity 
of the ellipse as follows. We first use (5.2) to eliminate C,  obtaining 

D'( 1 + h'/3') + 2D2( 1 - h2/3') = b2( 1 + 250). (5.15) 

It is appropriate at this point to introduce the true aspect ratio 

Y = hP (5.16) 
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of the ellipse in physical co-ordinates, giving finally 

D'( 1 + 7 2 )  + 2 0 2 (  1 - y2) = - y2 (1+2gD) (5.17) 

together with (5.9), i.e. y' = -y[4D + LJ( 1 + E 2 ) ] .  (5.18) 

Equations (5.17) and (5.18) reduce to (3.13) and (3.14) respectively as g+w. 
This is to be expected, since in that limit we lose the effect of the curvature of 
the jet, and are involved again with a vertically falling jet. The co-ordinate 6 
asymptotes to (-2y)t as E+w, both here and in $3.  The quantity D can if 
required be eliminated from (5.17) and (5.18) to give a nonlinear second-order 
ordinary differential equation for y, analogous to (3.17). 

On the other hand, in the present case no change of variables such as (3.16) 
can be used to make the system autonomous, and no unique phase-plane plots 
such as figure 2 can be presented. We have chosen to solve (5.17) and (5.18) 
numerically as they stand, and present in figures 3-5 some examples of computed 
results for y(g) for various assumed starting configurations. 

It should first be noted that, if we commence an integration of (5.17) and 
(5.18) at a value E = to, then the angle the jet makes with the horizontal a t  that 

(5.19) 
point is a, where 

t a n a =  -co. 
Although the present paper concerns solely free jets, we have in mind eventual 
application to jets from nozzles, which would require matching of the present 
flow to an exit flow from a rigid pipe. It is therefore appropriate to discuss our 
solution from the point of view of the (probable) parameters of the nozzle, one 
of which is its angle of inclination a given by (5.19). 

Circular initial cross-sections (i.e. y = 1) are clearly of particular interest, as 
are cross-sections which are initially locally stationary in eccentricity, with 
dy/dc = 0. In  figure 3 we show the variation with E of the aspect ratio y for such 
initial conditions, for various choices of the initial value to, or equivalently of 
the inclination a. The aspect ratio decreases monotonically to zero along the jet 
in all cases. It is also clear that the jet thickens substantially in side view at the 
top of the arc, i.e. that the semi-axis ha in the T,I direction increases. The semi- 
axis b in the (horizontal) x direction changes much less, but does appear to de- 
crease somewhat. For example the thickness in top view at the top of the arc 
is less than the initial diameter for initial inclinations less than about 65". The 
above features of the flow appear to be in a t  least qualitative agreement with 
observation. 

One may wish to design nozzles which maintain a circular cross-section over 
the top of the arc. Since a circular initial cross-section (y = 1) deforms in such 
a way that it develops a major axis in a vertical plane (i.e. y < l), it is plausible 
that one way to achieve this is to start with an elliptical cross-section with its 
major axis horizontal, i.e. with y > 1. However, so long as dy/dc = 0 initially, 
this is generally fruitless, since the rate of change of eccentricity increases 
rapidly with initial eccentricity. The major axis tends to become vertical at the 
top of the arc, and in every case becomes vertical far downstream. This is 
illustrated by figure 4, which shows the value of y at 5 = 0, plotted against the 

1 +g2 
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FIGTJRE 3. Variation along the jet of the aspect ratio of an elliptical-sectioned parabolic-arc 
jet, whose initial cross-section is circular and locally stationary in eccentricity. The initial 
value of f on each curve defines the initial angle of the jet, as in (5.19). 
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FIGURE 4. Effect of initial aspect ratio. Top-of-arc value of aspect ratio, for an elliptic- 
sectioned parabolic-arc jet, as a function of initial angle, for various starting aspect ratios 
and a zero initial rate of change of aspect ratio. 
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FIGURE 5. Effect of initial rate of change of aspect ratio. Top-of-arc value of aspect ratio, 
for an elliptic-sectioned parabolic-arc jet, as a function of initial aspect ratio, for an initial 
angle of 4 5 O ,  and three initial values of the ratio y'/y. (a) y'( - 1) = y( - l),  ( b )  y'( - 1) = 0, 
(c )  y'( - 1) = - y (  - 1).  

initial inclination a. Each separate curve corresponds to a different initial value 
of y, indicated by the value of y(0) a t  a = 0. For example, if 01 = 45", the major 
axis at the top of the arc is vertical unless the initial aspect ratio exceeds about 
3.25. These results could have been inferred from figure 2,  which indicated that, 
when dy/dc is initially zero, there is a tendency for the final flattening direction 
to be perpendicular to that initially. 

Finally, in figure 5 we indicate the effect of the initial rate of change of eccen- 
tricity. I n  this figure we plot the computed aspect ratio y(0) at the top of the 
arc against the initial aspect ratio y(0) for go = - 1, i.0. for a 45" initial angle of 
inclination, and for y'( - l ) / y (  - 1) = 0, & 1. There is again a strong tendency for 
y to decrease, even when y' > 0 initially, and the final theoretical state is always 
y = 0, i.e. flattening in the plane of the arc. Of course in practice the jet breaks 
up soon after the top of the arc. The question of the appropriate theoretical 
direction and extent of flattening well beyond the top of the arc is relevant to the 
rapidity of this breakup. 

6. Conclusion 
The problem of determination of the shape of the cross-section of a free jet 

has been reduced to that of solving a sequence of two-dimensional boundary-value 
problems in the cross-flow plane. These are free-surface problems with an unknown 
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boundary, on which both kinematic and dynamic boundary conditions must hold. 
I n  its most general form this problem is probably intractable; however, some 
further effort may be worth while on it, e.g. for some simple initial cross-sections 
such as the triangular shape for which Bidone’s striking observations were de- 
scribed by Rayleigh (1945, p. 356). 

I n  the present paper we have contented ourselves with a study of elliptical 
cross-sections, which are capable of staying elliptical as they propagate. The task 
is then to compute the parameters of the ellipse as functions of distance along the 
arc. We have shown how the aspect ratio or the eccentricity of the ellipse can be 
found by solving a nonlinear second-order ordinary differential equation. The 
solution depends on the choice of the initial conditions for the eccentricity and 
its rate of change. Once this equation is solved, we can then if required use 
(3.10) or (5.13) to determine the O(e2) correction to the main flow along that 
trajectory and hence the pressure distribution across the jet, which is parabolic, 
with a positive maximum at the centre of the jet. Since the one-dimensional 
continuity equation (2.5) determines the cross-sectional area of the ellipse, a 
knowledge of its eccentricity also enables the separate major and minor axes 
to be established. 

It has been tacitly assumed here that the free jets considered can be matched 
to exit flows from orifices. I f  for example the orifice is a straight pipe, the values 
of the eccentricity and its rate of change are those appropriate to the pipe ending. 
Although this is likely to be true for such straight pipes, the choice of the appro- 
priate initial conditions when the jet emerges from holes, spillways etc. is not 
at  all clear. A survey of procedures for carrying out such matching for flows 
through small holes in two or three dimensions is given by Tuck (1975a).  

The present work and most (but see Conway 1967; Keady & Norbury 1975) 
of that by previous authors has concerned thin jets. It is of interest to consider 
the behaviour as the thickness increases. The effective thickness e defined by 
(1.9) can become large either if the flow rate 6 is large or if the velocity scale U 
is small. I n  the case of a parabolic arc, U is the horizontal velocity, so that (at 
fixed exit velocity magnitude) we can make E large by making the jet’s initial 
inclination more nearly vertical. The ultimate effect is of course that the jet 
falls back on itself, and the assumed single-branched nearly parabolic arc is no 
longer a valid topology for the flow. Some of the existence and uniqueness 
questions which arise in this and related free-surface problems (cf. Tuck 19753) 
are of practical interest. 

I wish to acknowledge the usefulness of critical discussion of this work with 
Dr L. Schwartz. 
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